Underground Storage Tank Remediation Project at Department of Defense Housing Facility, Novato, CA (continued)

Jim Gibbs

Technology Considerations

- Objectives
 - Remove adequate mass to make site low risk and allow implementation of remediation by natural attenuation
 - Achieve above objective within timeframe of site transfer requirements
 - Minimize cost
 - Minimize worker health risk

Low Risk Site Criteria

- Leak stopped/Free product removed
- Adequate site characterization
- Dissolved hydrocarbon plume is not migrating
- No receptors impacted (wells, surface water)
- No significant human health risk
- No significant ecological risk

Risk-Based Approach

Evaluate risk to human health using procedures based on ASTM E 1739-95 Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (RBCA)

RBCA - Tiered Risk Evaluation

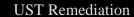
- Tier 1
 - Conservative assumptions applied to all release sites
 - No site-specific information used
 - Transport equations used to back-calculate Risk-Based Screening Levels (RBSLs) from maximum permissible risk and dosage
 - Site concentrations compared to RBSLs

RBCA Tier 1 Calculation - Example

Performed on each compound for each applicable exposure pathway:

Toxicological Data

Carcinogen


10⁻⁶ Risk

Compoundspecific dosage that corresponds to 10⁻⁶ risk Mass Transfer

Transport equation

Tabulated

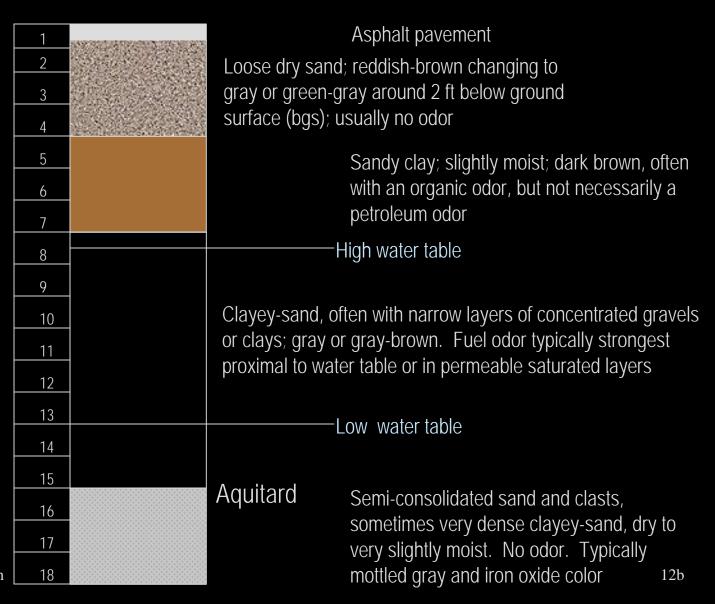
RBSL

Example Equation for Pathway: Subsurface Soil to Outdoor Air Inhalation

Example Equation for Pathway: Subsurface Soil to Outdoor Air Inhalation

Health and Ecological Risk Factors - Pathways and Receptors

- Potential Pathways
 - Human Health Risk
 - Volatilization from soil to air
 - Volatilization from groundwater to air
 - Dermal contact
 - Ecological Risk
 - Pacheco Creek
 - Storm water runoff system


Health and Ecological Risk Factors - Pathways and Receptors

- Potential Receptors
 - Human
 - Workers
 - Building occupants
 - Agricultural workers? (possible irrigation water use)
 - Ecological (complete pathway unlikely)
 - Sensitive biota
 - San Pablo Bay

Geological Description

- Likely deposit-filled stream bed
- Alluvial deposits
- Surficial fill material
- Interbedded gravels, sands, silts, and clays
- Aquitard encountered at 15 ft
- Bedrock to the east and west

Typical Soil Lithology

Hydrogeological Description

- Groundwater encountered at 7.5 to 13 ft below ground surface (bgs)
- Smear zone within that fluctuation
- Groundwater gradient 0.014 ft/ft
- Groundwater velocity ~0.2 ft/d
- Hydraulic conductivity ~4 ft/d
- Sand content in permeable layer 70 to 90%

Aquifer and Soil Evaluation

- Aquifer
 - Groundwater sampling
 - concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX); and methyl tert-butyl ether (MTBE)
 - total dissolved solids (TDS)
 - natural attenuation parameters
 - Fe
 - SO4
 - NO3
 - CH4
 - TMB

UST Remediation - TeMB

Aquifer and Soil Evaluation

- Aquifer (continued)
 - Pump tests
 - sustainable yield
 - hydraulic conductivity
 - Slug tests
 - Groundwater gradient

Aquifer Evaluation to Determine Beneficial Use

- US Army demonstrated non-beneficial use aquifer
 - Total dissolved solids (TDS) > 3,000 mg/L
 - Sustained production < 200 gallons per day
- DODHF Novato
 - Groundwater sampling
 - Slug tests
 - Pump test

Aquifer and Soil Evaluation

- Soil
 - Soil sampling
 - concentrations of BTEX and MTBE
 - grain size distribution
 - bulk density
 - Continuous coring for lithological data
 - Cone Penetrometer study

Technology Considerations

- Remediation needs
 - Remove free product (if present)
 - Reduce concentrations in groundwater
 - Reduce concentrations in soil

UST Remediation 19b

Reduce Concentrations in Groundwater

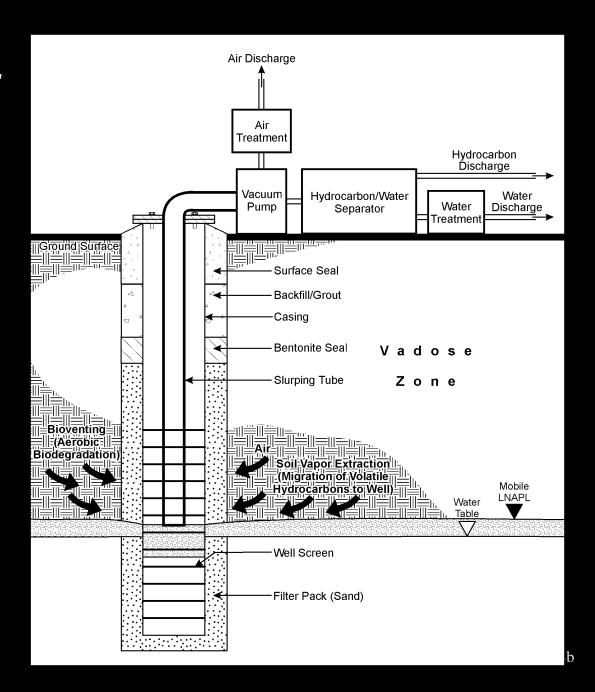
Reduces risk

- Reduces plume migration potential
 - Reduces concentration gradient in groundwater
 - Monitored by quarterly groundwater sampling

UST Remediation 20b

Free Product Removal (if present)

- Bioslurping
 - Demonstrated as best available technology for free product removal
 - Vacuum enhanced multi-fluid extraction
 - Removes recoverable free product
 - Enhances biodegradation in vadose zone

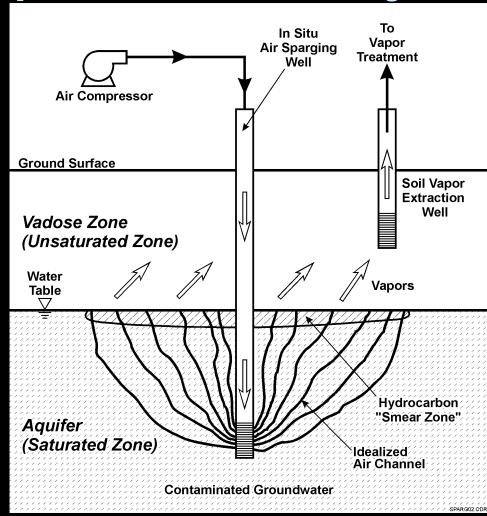

UST Remediation 21b

Bioslurping

- Vacuum pipe inserted into well to withdraw freefloating petroleum and soil vapor
- Enhances lateral migration of fuel into wells for removal
- Enhances biodegradation in soil (by aerating soil)
- Results in fuel, water, and vapor streams

UST Remediation 22b

Bioslurper System



In Situ Air Sparging (IAS)

- Injection of air under pressure directly into aquifer
- Strips hydrocarbons from groundwater
- Enhances biodegradation in aquifer and in unsaturated soils
- Frequently accompanied by soil vapor extraction (SVE)

UST Remediation 24b

In Situ Air Sparging/ Soil-Vapor Extraction System

Soil Vapor Extraction (SVE)

- Withdraws vapor from among soil particles
- Enhances volatilization of hydrocarbons from sorbed soil sites
- Conducts vapor to surface for treatment
- Protects against uncontrolled vapor release and migration

UST Remediation 26b

MTBE Plume Characterization

- GeoProbe sampling performed 1997
- GeoProbe sampling performed 1998
- Cone Penetrometer sampling performed 1998
- 5 monitoring wells installed 1998
- 4 temporary piezometers installed 1998
- further investigations under discussion

UST Remediation 27b

MTBE Approach

- Evaluate IAS/SVE system MTBE removal effectiveness
 - stripping likely to be effective initially due to high MTBE concentrations
- Make recommendations for improvement and optimization
 - continue operation
 - expand system
 - select different technology

Progress Review

- Previous investigations reviewed
- Preliminary investigations completed
 - technology specific
 - Tier 1 risk assessment
 - special site requirements
- Interim remedial action system installed
- baseline sampling completed

UST Remediation 29b

Exit Strategy

- Demonstrate that site is low risk
- Determine if Remediation by Natural Attenuation (RNA) is likely to be effective alternative
- Implement RNA
 - RNA includes long-term groundwater monitoring
 - Establish concentration trends

System Expansion

Implemented if technology effective, but not achieving adequate removal due to scale of systems

Oversized equipment to enable expansion (if necessary)

Remedial Action Objectives

Removal of adequate mass to result in

- low risk site
- plume collapse
- concentrations that can be remediated by RNA with acceptable impact

UST Remediation 41b

Long Term Monitoring

Implemented in conjunction with remediation by natural attenuation

- BTEX and MTBE concentrations
- natural attenuation parameters

UST Remediation 42b

Site Closure

Expected to be achieved when trends from monitoring and RNA adequately demonstrate that plume is shrinking at an acceptable rate

UST Remediation 43b